Sabtu, 16 Juli 2016

MINGGU KE 13 MATEMATIKA DAN IAD



Nama   : Rahma Safitri
Kelas   : 1pa13
Npm    : 15515556
TUGAS MATEMATIKA DAN IAD 

Bab 13 Fungsi 

 8.1. Definisi Fungsi
Fungsi, dalam istilah matematika adalah pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain) kepada anggota himpunan yang lain (dinamakan sebagai kodomain). Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah “fungsi“, “pemetaan“, “peta“, “transformasi“, dan “operator” biasanya dipakai secara sinonim.
Anggota himpunan yang dipetakan dapat berupa apa saja (kata, orang, atau objek lain), namun biasanya yang dibahas adalah besaran matematika seperti bilangan riil. Contoh sebuah fungsi dengan domain dan kodomain himpunan bilangan riil adalah y=f(2x), yang menghubungkan suatu bilangan riil dengan bilangan riil lain yang dua kali lebih besar. Dalam hal ini kita dapat menulis f(5)=10.

8.2. Domain, Kodomain dan Range
Domain adalah daerah asal, kodomain adalah daerah kawan, sedangkan range adalah daerah hasil
Pada diagram di atas, X merupakan domain dari fungsi f, Y merupakan kodomain
contoh 1 :
Diketahui himpunan P = { 1,2,3,4 } dan himpunan Q = { 2,4,6,8,10,12 }
Relasi dari himpunan P ke himpunan Q dinyatakan dengan ” setengah dari “.
Jika relasi tersebut dinyatakan dengan himpunan pasangan berurutan menjadi :
{ (1,2),(2,4),(3,6),(4,8) }.
Relasi di atas merupakan suatu fungsi karena setiap anggota himpunan P mempunyai tepat satu kawan anggota himpunan Q.
Dari fungsi di atas maka : 
Domain/daerah asal = himpunan P = { 1,2,3,4 }
Kodomain/daerah kawan = himpunan Q = { 2,4,6,8,10,12 }
Range/daerah hasil = { 2,4,6,8 }
contoh 2 :
Jika A = {2, 3, 6} B = {2, 4, 6, 8, 10, 11}. Relasi dari himpunan A ke B adalah “Faktor dari “, nyatakanlah relasi tersebut dengan :
a. Himpunan pasangan berurutan.
Jawab:
a. Himpunan pasangan berurutannya :{(2, 2), (2,4), (2, 6), (2, 8), (2, 10), (4, 4),
(4, 8),(6, 6)}
contoh 3 :
Tuliskan Domain, Kodomain dan Range dari relasi Contoh 2 di atas :
Jawab:
Domain = {2, 4, 6}
Kodomain = {2, 4, 6, 8, 10, 11}
Range = { 2, 4, 6, 8, 10}
contoh 4 :
Perhatikan diagram panah berikut.
Diagram panah tersebut menunjukkan fungsi
himpunan P ke himpunan Q dengan relasi “dua
kali dari”. Tentukanlah domain, kodomain, dan
range fungsinya.
Jawab :
• Domainnya (Df) adalah P = {4, 6, 8, 10}
• Kodomainnya adalah Q = {1, 2, 3, 4, 5}
• Rangenya (Rf) adalah {2, 3, 4, 5}

Membedakan fungsi satu-satu (one to one) dan Fungsi pada (onto)

Fungsi injektif (satu-satu)
Jika fungsi f : A → B, setiap b
B hanya mempunyai satu kawan saja di A, maka fungsi itu disebut fungsi satu-satu atau injektif.

Fungsi surjektif (onto)
Pada fungsi f : A → B, setiap b
B mempunyai kawan di A, maka f disebut fungsi surjektif atau onto.


Fungsi bijektif (korespondensi satu-satu)
Suatu fungsi yang bersifat injektif sekaligus surjektif disebut fungsi bijektif atau korespondensi satu-satu.


sumber :
 
 http://www.madematika.com/2015/08/jenis-jenis-fungsi-dan-sifat-sifat.html
 https://restawurii.wordpress.com/2014/05/23/fungsi-domain-kodomain-range/

Tidak ada komentar:

Posting Komentar